Calculation of the Lyman-Continuum Photon Production Efficiency ξ_{ion} of $z \sim 3.8 - 4.7$ Galaxies Based on the IRAC H α fluxes

Miftahul HILMI ICRR, the University of Tokyo

Outline

- Introduction
- Data
- Method
- Result
- Summary

- What is the source of cosmic reionization?
 - Ionizing photons escaping from star-forming galaxies?

$$\dot{n}_{\rm ion} = \int_{-\infty}^{M_{\rm trunc}} f_{\rm esc}(M_{\rm UV}) \xi_{\rm ion}(M_{\rm UV}) \Phi(M_{\rm UV}) L(M_{\rm UV}) dM_{\rm UV}$$

generated ionizing photons
escaping ionizing photons

• What is ionizing photons production efficiency (ξ_{ion})?

Data

- GOLDRUSH (Great Optically Luminous Dropout Research Using Subaru HSC) Catalog (Ono+ 2017): 259 spectroscopically-confirmed LBGs.
- SPLASH (Spitzer Large Area Survey with HSC) data (PI: P. Capak) covering COSMOS and SXDS fields.
- Subaru/HSC: g, r, i, z, Y; and Spitzer/IRAC: Ch1, Ch2
- z=3.8-5.0, $(m_{ch1}, m_{ch2}) < m_{3\sigma}$
- 56 SFGs with positive Ha flux.

Method

- SED fitting without nebular components and excluding the *Spitzer*/IRAC Ch1 magnitude data.
- Ha fluxes are calculated by using the difference in the observed magnitude in Channel 1 and the model magnitude from SED fitting.

Method

• SED fitting without nebular components and excluding the *Spitzer/*

Method

- The Ha fluxes and UV continuum luminosities are corrected by Calzetti extinction law (Calzetti+ 2000) and Meurer relation (Meurer+ 1999): $A_{\rm UV} = 1.99(\beta + 2.23)$, assuming that the nebular extinction is same as the stellar extinction.
- UV-continuum slope, β calculated from $(f_{\lambda} \propto \lambda^{\beta})$:

$$\beta = -\frac{m_1 - m_2}{2.5 \log(\lambda_c^1 / \lambda_c^2)} - 2$$

• log ξ_{ion} calculated from:

$$\xi_{\text{ion},0} = \frac{N(\text{H}^{0})}{L_{\text{UV}}^{\text{corr}}} \qquad \qquad N(\text{H}^{0})[\text{s}^{-1}] = \frac{L(\text{H}\alpha)[\text{erg s}^{-1}]}{1.36 \times 10^{-12}}$$

Result (SED fitting)

Result (SED fitting)

Result (M_{UV} vs log ξ_{ion})

Result (M_{UV} vs log ξ_{ion})

Result (β vs log ξ_{ion})

Result (β vs log ξ_{ion})

Result (Lyman Alpha Escape Fraction, *f*^{Lya}esc)

- We also have the information of Lyman Alpha fluxes from the Mallery+ 2012
- We derive the Lyman Alpha escape fraction from:

$$f_{\rm esc}^{\rm Ly\alpha} \equiv \frac{L_{\rm obs}({\rm Ly}\alpha)}{L_{\rm int}({\rm Ly}\alpha)} = \frac{L_{\rm obs}({\rm Ly}\alpha)}{8.7L_{\rm int}({\rm H}\alpha)}$$

Result (f^{Lya}_{esc} vs ξ_{ion})

Result ($f(H\alpha)$ vs $f^{Ly\alpha}_{esc}$)

Summary

- We derive the Lyman-Continuum photon production efficiency ξ_{ion} using the H α fluxes derived from the *Spitzer/IRAC* data. Our results are consistent with the previous work.
- We find an anti-correlation between β and ξ_{ion} . (bluer —> more ionizing photons) as predicted by Bouwens+ 2015
- No correlation between ξ_{ion} and f^{Lya}_{esc} , but anti-correlation between H α fluxes and f^{Lya}_{esc} .